Support Vector Regression in Python – Step 3.) Feature Scaling for Support Vector Regression

with No Comments

#Import Libraries

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

#Import data
dataset = pd.read_csv(‘SVR Data.csv’)
x = dataset.iloc[:,1:2].values
y =dataset.iloc[:,2].values

# Splitting the dataset into the Training set and Test set
from sklearn.cross_validation import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size = 0.2)

#Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_x=StandardScaler()
sc_y=StandardScaler()
x =sc_x.fit_transform(x)
y =sc_y.fit_transform(y)

 

Leave a Reply